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Abstract
We show that a simple soft-core binary fluid mixture with purely repulsive
interactions exhibits a λ-line, i.e., a line of continuous transitions to a state
characterized by undamped periodic concentration fluctuations (microphase
separation). For states in the disordered fluid phase the bulk pair correlation
functions exhibit strong 1–2 ordering,similar to that found in ionic fluids,which
is also reflected in the density profiles of confined fluids. The latter display fluid
layers alternating from rich in species 1 to rich in species 2. We argue that the
λ-instability drives a freezing transition to a highly delocalized crystal, with
Lindemann ratios that can exceed 90% near melting.

Soft matter systems are complex, multicomponent mixtures. They commonly consist
of macromolecular entities in a microscopic solvent and include a number of additional
constituents. The enormous flexibility in controlling the architecture of the macromolecules,
the solvent type and the composition of the mixture bring about a concomitant freedom in
tailoring the effective interaction potentials between the dissolved mesoscopic particles [1].
Recently much attention has been devoted to the derivation of such effective interactions for
polymeric entities in solution. Important examples are linear [2] and star polymers [3] as well
as dendrimers [4]. Often, the centre of mass of the fractal polymer is chosen as an effective
coordinate. In this case, and in contrast to the interaction potentials commonly known from
the realm of atomic systems, effective interactions can be ultrasoft and bounded, i.e., free of
divergence even for full overlap between the centres of mass. This fact has rekindled interest
in the study of the properties of systems interacting by means of such potentials, a prominent
example being the Gaussian core model (GCM), first introduced by Stillinger [5]. The phase
behaviour of the one-componentGCM is rich, displaying crystallization and ‘inverted melting’
at sufficiently low temperatures [6]. Even richer is the structural and phase behaviour of binary
Gaussian mixtures, which can exhibit fluid–fluid demixing and a wealth of interesting wetting
properties when brought into contact with repulsive walls [7]. In this letter, we focus on a
binary GCM fluid that does not display fluid–fluid demixing. Rather, the present mixture
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displays what is often termed a λ-transition in the ionic fluid literature3 or, more generally,
microphase separation, i.e., an instability with respect to periodic density modulations [9].

A very reliable density functional theory (DFT) approach has been developed for the
GCM [6]. Within the realm of this DFT, we investigate the structure of the homogeneous fluid
and also locate the freezing and λ-transitions of the system. Our model is specified by the
pair potentials between particle species i and j : vi j (r) = εi j exp(−r2/R2

i j), where εi j > 0
denotes the energy and Ri j determines the range of the i j interaction; 1 � i, j � 2. Provided
εi i � 2kBT , then the GCM can be thought of as a simple model for polymers in a good solvent,
where the Gaussian potential represents the effective potential between the centres of mass of
a pair of polymers [1]. In this case Rii is approximately the radius of gyration for polymer
species i . At such reduced temperatures the one-componentGCM is fluid at all densities [1, 6].
For an athermal binary mixture of polymers one expects, based on simulation results [10], that
the parameters for the effective pair potential between unlike species are given by the mixing
rules: ε12 � ε11 = ε22 and R2

12 = (R2
11 + R2

22)/2 [2, 7, 10], i.e. R12 = (1 + �)(R11 + R22)/2,
where the non-additivity parameter � > 0. This positive non-additivity can drive a demixing
transition if the density of the fluid is sufficiently high [2, 7]. However, in the present study we
are interested in the case where � < 0, i.e., negative non-additivity. In this case the binary fluid
does not demix. Physically, the nonadditivity can be tuned by appropriate chemistry in polymer
mixtures or by modifications of the macromolecule architecture in dendrimer mixtures, which
are also described by Gaussian interactions [4]. The pair potential parameters we choose are
ε11 = ε22 = 2 kBT , ε12 = 1.8877 kBT , R22 = 0.665R11 and R12 = 0.6R11. Apart from this
choice of value for R12, these parameters are the same as those used for much of the work
in [7] (where R12 = 0.85R11 was used).

We employ the simple random-phase approximation (RPA) for the excess Helmholtz free
energy functional of the inhomogeneous mixture:

Fex[{ρi}] = 1
2

∑
i j

∫
dr1

∫
dr2 ρi (r1)ρ j (r2)vi j (|r1 − r2|), (1)

where ρi (r) is the one-body density profile for species i . This functional, which generates the
RPA for the pair direct correlation functions, c(2)

i j (r1, r2) = −βδ2Fex/δρiδρ j = −βvi j(|r1 −
r2|), where β = (kBT )−1 [11], is surprisingly accurate for calculating the bulk fluid structure
and thermodynamics of the GCM, provided the fluid density is sufficiently high, so that the soft
cores of the GCM particles overlap strongly [1]. In figure 1 we display the radial distribution
functions gi j(r), calculated for a fluid with total density ρR3

11 = 5 and concentration of species
2, x ≡ ρb

2/ρ = 0.4 (ρb
i is the bulk density of species i ). These are obtained from Monte Carlo

(MC) simulations and from the DFT via the test-particle route. Within DFT, the profiles ρi (r)
are calculated by minimizing the grand potential functional [11, 7]:

�[{ρi}] = F[{ρi }] −
2∑

i=1

∫
dr (µi − Vi (r))ρi(r), (2)

where F = Fid + Fex and Fid is the ideal gas part of the free energy functional, µi are the
chemical potentials and Vi(r) are the external potentials, in this case those due to the fixed test
particle of species j . Then, g ji(r) = ρi(r)/ρb

i . In general, we find that the RPA test-particle
results for gi j(r) are more accurate than those obtained using the RPA closure for c(2)

i j (r) in
the bulk Ornstein–Zernike (OZ) equations. They are also very close to those from the HNC

3 See e.g. Stell [8]. The λ-line refers to a line of continuous transitions (analogous to Néel points in spin 1
Ising antiferromagnets) from a charge-disordered state to a periodic charge-ordered state where the charge–charge
correlation function rhqq (r) is purely oscillatory. For a recent discussion of charge correlations near a λ-line see
Ciach et al [8].
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Figure 1. Radial distribution functions gi j (r) for a binary GCM mixture with total density ρ R3
11 = 5

and concentration x = ρb
2/ρ = 0.4. The open circles denote the MC-simulation results and the

solid curves the DFT test-particle results.

closure to the OZ equations [12, 1, 2, 7]. From figure 1 we see that the RPA functional (1)
provides a very accurate account of the correlations at this particular state point and this leads
us to consider higher total densities ρ where the RPA should be even more reliable. Here we
find more pronounced ordering.

On increasing ρ, the gi j(r) display a growing tendency for the fluid to order with the
particles of species 1 preferring species 2 as nearest neighbours and vice versa. We refer to
this as 1–2 ordering; it is similar to what occurs in a charged fluid where cations prefer to
be surrounded by anions [12] and is illustrated in figure 2 where we plot the concentration–
concentration correlation function hcc(r) = (1 − x)2h11(r) + x2h22(r)− 2x(1 − x)h12(r), and
the number–number correlation function hnn(r) = (1−x)2h11(r)+x2h22(r)+2x(1−x)h12(r)

calculated at the state point with density ρR3
11 = 12 and concentration x = 0.15; hi j(r) =

gi j(r) − 1. There are pronounced oscillations in hcc(r), showing the tendency of the fluid to
exhibit 1–2 ordering. The function hnn(r) is relatively flat, i.e., the number–number correlations
are much weaker. In the inset to figure 2 we plot the structure factor S11(k) on path A in
the phase diagram (see figure 3). We see the development of a pronounced peak in S11(k)

at k = kc � π/R12, whose height increases continuously and eventually diverges as the
concentration x increases towards a certain value xλ at fixed ρR3

11 = 12. The other two structure
factors, S12(k) and S22(k), also diverge at the same point,and the three pair correlation functions
become purely oscillatory for large r : rhi j(r) ∼ Ac

i j cos(kcr + θi j), i, j = 1, 2, as x → xλ.

We recall that the partial structure factors are defined as Si j (k) = δi j +
√

ρb
i ρ

b
j ĥi j(k), where

ĥi j (k) are the Fourier transforms of hi j(r). In Fourier space, the OZ equations for hi j (r) can
be written as [12] ĥi j (k) = Ni j (k)/D(k), where Ni j (k) = ĉi j(k)+δi jρ

b
i [ĉ2

12(k)− ĉ12(k)ĉ22(k)]
and

D(k) = [1 − ρb
1 ĉ11(k)][1 − ρb

2 ĉ22(k)] − ρb
1ρb

2 ĉ2
12(k). (3)

The ĉi j(k) are the Fourier transforms of c(2)

i j (r). If in certain domains of the phase diagram
D(k) = 0 for k = kc �= 0, then the partial structure factors diverge at some (real) wavenumber



L300 Letter to the Editor

0 2 4 6 108
r/R11

– 0.15

– 0.05

0.05

0.15

0.25

0.35

h cc
(r

),
h nn

(r
)

0 5 10 15kR11

0

1

2

3

4

S
11

(k
)

hcc(r)

hnn(r)

Figure 2. The correlation functions hcc(r) and hnn(r) calculated using the DFT test particle route,
for the binary GCM fluid with total density ρR3

11 = 12 and x = 0.15. In the inset the partial
structure factor S11(k) is plotted at concentrations x = 0.0, 0.05, 0.1 and 0.15 along path A in
figure 3, at fixed ρR3

11 = 12. As x is increased further the height of the peak in S11(k) grows
continuously, diverging at the λ-line.

kc. Standard asymptotic analysis shows that in real space this corresponds to rhi j(r) having
a purely oscillatory form as r → ∞. We define the λ-line as the locus of points in the phase
diagram at which D(kc) = 0 (see footnote 3). Outside this line D(k) > 0 for all k values. We
calculated the λ-line, plotted in figure 3, by determining the zeros of D(k) in equation (3) within
the RPA: ĉi j(k) = −βv̂i j(k), where v̂i j (k) are the Fourier transforms of the pair potentials
vi j (r).4 On the λ-line the fluid becomes unstable with respect to periodic concentration
fluctuations with wavenumber kc ∼ π/R12. The physical origin for this instability lies in
the choice R12 < R22 < R11; there is a lower potential energy for a particle to be located at a
distance ∼R12 from a particle of the opposite species, thereby generating 1–2 ordering. This
is quite distinct from the recently found microphase separation in a lattice model [13], which
is caused rather by the selection of the energetic prefactors εi j in vi j (r).

The occurrence of an instability of a fluid to periodic concentration modulations often
signals the presence of a nearby freezing transition [14]. In order to investigate freezing, we
used the simple RPA free energy functional, equation (1), to calculate both the fluid and the
crystal free energies. In the case of the fluid, ρi(r) = ρb

i and the bulk Helmholtz free energy
is very simple [2, 7]. For the crystal, we assume that the one-body density profiles have the
following form:

ρi (r) =
∑

n

ηi

(αi

π

)3/2
exp(−αi |r − Rn|2), (4)

i = 1, 2, i.e., a set of Gaussian density peaks, centred on a set of lattice sites located at Rn. The
parameters α

−1/2
i and ηi are the width and lattice site occupation numbers for each species.

The latter are very important for bounded interactions, since multiple site occupancies are
now allowed [15]. Given the occurrence of the λ-line, indicating the strong propensity of
particles to favour the opposite species as nearest neighbours, we expect the crystal structure

4 One can show that the test-particle and OZ routes yield the same poles of ĥi j (k).
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Figure 3. Phase diagram for the binary mixture of GCM particles determined by DFT. ρ is the total
density and x is the concentration of the smaller species 2. The open circles joined by a solid curve
denote the crystal–liquid phase boundary, and the dashed curve denotes the λ-line (see text). In the
inset we plot the Lindemann ratios Li for the crystal, calculated at constant density ρR3

11 = 20.
The solid curve corresponds to L1 (the larger species), and the dashed curve to L2.

to reflect this 1–2 ordering. On this basis we chose as our trial crystal structure the bcc
lattice, with one species centred on the unit cell corner, and the other species centred on the
site at the centre of the unit cell, i.e., the CsCl crystal structure5. For a given density ρ and
concentration x , the Helmholtz free energy functional for the crystal becomes a function, F̃c,
of α1, α2 and a, where a is the lattice constant. In order to calculate the free energy of the
crystal we minimize F̃c(α1, α2, a) with respect to α1, α2 and a. From the resulting Helmholtz
free energy per particle, fc, we can calculate the pressure in the crystal, P , and the Gibbs
free energy, gc(x, P) = fc + P/ρ. In order to determine the equilibrium phase, we calculate
gc(x, P) along an isobar and compare this with the liquid state Gibbs free energy gl(x, P),
along the same isobar. The coexisting solid and liquid densities are obtained by performing
the common-tangent construction between the curves gc(x, P) and gl(x, P) [7]. We find that
the difference in density, �ρ, between the coexisting crystal and liquid is very small, typically
�ρ/ρ < 0.1% for points on the coexistence curve.

The full crystal–fluid phase boundary is plotted in figure 3. Since the density difference
between the coexisting crystal and liquid is very small, we merely display the locus gc = gl and
omit the very narrow coexistence regions. The crystal–liquid phase boundary lies just inside the
λ-line. We might, perhaps, have expected the former to lie outside the λ-line, i.e. crystallization
might be expected to pre-empt the onset of an instability to periodic ordering, and we speculate
that since the two are so close the crystal–liquid boundary might lie outside the λ-line in a
more accurate theory. We have not calculated the free energy for any other lattice structures
(see footnote 5). For a binary mixture of particles there are many potential lattice structures;
however, the fact that the bcc lattice has a lower free energy than the liquid suggests that the
system should be crystalline in some portions of the phase diagram. The occurrence of other

5 We prefer the CsCl to the NaCl crystal structure since in the former the cation has eight neighbours as opposed to
six. For the present GCM we therefore expect the CsCl structure to have a lower free energy than the NaCl structure.
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Figure 4. Fluid density profiles ρi for the binary GCM in a spherical cavity calculated for N1 = 700
and N2 = 300. The solid curves refer to the DFT results and the circles to those of Brownian
dynamics simulations. In the inset we show the DFT profiles for the fluid confined in a planar slit
of width d = 10R11. For a specification of the wall–particle potentials, see the text.

ordered phases, such as ‘lamellar-like’ ones, which may intervene between the disordered fluid
and the crystal, cannot be excluded, but we have not considered such phases in this work.

The most striking feature of the crystalline phase is that there are multiple occupancies
on each lattice site6, i.e., ηi � 12, and the particles on each lattice site are highly delocalized.
This can be seen in the inset to figure 3, where we plot the Lindemann ratios, Li = √

2/a
√

αi ,
i = 1, 2, which are defined as the root mean square displacement of a particle of species i
divided by b = a

√
3/2, the nearest neighbour distance, calculated for constant ρR3

11 = 20.
We find that near to crystal–liquid coexistence Li can be as high as 90%; recall that a typical
atomic crystal is known to melt when Li � 10%. Clearly, the present crystal is highly
delocalized. Another feature of the crystal is that the lattice constant varies very little, ranging
from a � 1.35R11 to 1.5R11 in different parts of the phase diagram. On increasing the total
density for a constant composition x , we find that a remains roughly constant and ηi increases,
in close similarity to the case of a one-component system (in the ρ–T plane) whose bounded
interparticle potential has a Fourier transform that displays oscillatory behaviour [15].

The presence of the λ-line also has very pronounced effects on inhomogeneous fluid
density profiles. In figure 4 we display the profiles calculated for N1 = 700 particles
of species 1 and N2 = 300 particles of species 2, in a spherical cavity with potentials
βVi(r) = 10(r/3R11)

10. The agreement between the DFT and simulation results is remarkably
good; the DFT captures all the details of the highly structured profiles. Note that within
the grand canonical DFT 〈Ni 〉, the mean number of particles of species i in the cavity, is
constrained. The corresponding chemical potentials µi can be associated with a bulk reservoir
with x = 0.477 and ρR3

11 = 6.7—a state point well removed from the λ-line. When the
fluid mixture is confined between two parallel walls, separated by the distance d and exerting
potentials βVi(z) = exp(−z/R11)/(z/Rii ) + exp(−(d − z)/R11)/((d − z)/Rii ), we find it

6 For the one-component GCM crystal the lattice sites have single occupancy, see [6].
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orders into well defined layers alternating from rich in species 1 to rich in species 2. In the
inset to figure 4 we plot the density profiles for a slit with d = 10R11; the chemical potentials
correspond to a reservoir with x = 0.5 and ρR3

11 = 9.5, a state chosen to be close to the λ-line.
The striking alternating layered structure of the fluid may prove to enhance its lubricating
properties.

In this letter we have shown that for a simple soft-core model binary fluid, exhibiting
1–2 ordering, the presence of a λ-transition has a significant effect on correlations in the bulk
fluid, even for states relatively far from the λ-transition. The latter drives a freezing transition
to a highly delocalized solid and also manifests itself in the form of inhomogeneous fluid
density profiles which show a confined fluid ordering into alternating layers of the two species.
Although we have restricted our present study to the binary GCM, we expect the λ-line and the
associated phenomena to occur quite generally for binary mixtures whose components interact
by means of bounded potentials which display negative non-additivity.
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Ciach A, Góźdź W T and Evans R 2003 J. Chem. Phys. 118 3702

[9] Sear R P and Gelbart W M 1999 J. Chem. Phys. 110 4582 and references therein
[10] Dautenhahn J and Hall C K 1994 Macromolecules 27 5399
[11] Evans R 1992 Fundamentals of Inhomogeneous Fluids ed D Henderson (New York: Dekker) chapter 3
[12] Hansen J-P and McDonald I R 1986 Theory of Simple Liquids 2nd edn (London: Academic)
[13] Finken R et al 2004 J. Phys. A: Math. Gen. 37 577
[14] This notion can be traced back to Kirkwood J G and Monroe E 1941 J. Chem. Phys. 9 514, see also [15]
[15] Likos C N et al 2001 Phys. Rev. E 63 031206


